Thursday 29 May 2014

Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi

Background:
Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation.
Methods:
Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondonia (Brazil), collected in the early and late periods of the rainy season.
Results:
Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region.
Conclusions:
The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region.

Source: http://www.malariajournal.com/content/13/1/203

news auto sport

No comments:

Post a Comment