Background:
Alkaloids present in plants of the Amaryllidaceae family are secondary metabolites of high biological interest, possessing a wide range of pharmacological activities. In the search for new plant-derived compounds with antimicrobial activities, two alkaloid extracts obtained from bulbs and leaves of Pancratium illyricum L., a plant of the Amarillydaceae family, were tested for their effect on bacterial and yeast growth.
Methods:
The broth microdilution susceptibility test was applied to study the effect of plant extracts on the growth of reference bacterial strains and Candida albicans reference and clinical isolates strains. Extracts obtained from the different parts of the plant were tested and compared with the pure components identified in the extracts. Since matrix metalloproteinase enzymes play a role in the dissemination process of Candida albicans, the effect of the bulb extract and pure alkaloids on in vitro collagenase activity was tested. Cell viability test was carried out on human embryo lung fibroblasts (HEL 299).
Results:
Whilst both extracts did not show any inhibitory activity against neither Gram positive nor Gram negative bacteria, a strong antifungal activity was detected, in particular for the bulb extract. All clinical isolates were susceptible to the growth inhibitory activity of the bulb extract, with endpoint IC50 values ranging from 1.22 to 78 mug/mL. The pure alkaloids lycorine and vittatine, identified as components of the extract, were also assayed for their capacity of inhibiting the yeast growth, and lycorine turned very active, with endpoint IC50 values ranging from 0.89 to 28.5 mug/mL. A potent inhibition of the in vitro collagenase activity was found in the presence of the bulb extract, and this effect was much higher than that exerted by the pure alkaloids. Viability of cell lines tested was not affected by the extract.
Conclusions:
Taken together, results suggest that the extract of Pancratium illyricum may act as antifungal agent both directly on the yeast growth and by altering the tissue invasion process.
No comments:
Post a Comment