Wednesday, 29 February 2012

Rapamycin inhibition of baculovirus recombinant (BVr) ribosomal protein S6 kinase 1 (S6K1) is mediated by an event other than phosphorylation.

Background:
Ribosomal protein S6 kinase 1(S6K1) is an evolutionary conserved kinase that is activated in response to growth factors and viral stimuli to influence cellular growth and proliferation. This downstream effector of target of rapamycin (TOR) signaling cascade is known to be directly activated by TOR- kinase mediated phosphorylation at the hydrophobic motif (HM) at Threonine 412 (T412). Selective loss of this phosphorylation by inactivation of TOR kinase or activation/recruitment of a phosphatase has accordingly been implicated in mediating inhibition by rapamycin.FindingsWe present evidence that baculovirus driven expression of S6K1 in insect cells (Sf9) fails to activate the enzyme and instead renders it modestly active representing 4-6 folds less activity than its fully active mammalian counterpart. Contrary to the contention that viral infection activates TOR signaling pathway, we report that BVr enzyme fails to exhibit putative TOR dependent phosphorylation at the HM and the resultant phosphorylation at the activation loop (AL) of the enzyme, correlating with the level of activity observed. Surprisingly, the BVr enzyme continued to exhibit sensitivity to rapamycin that remained unaffected by mutations compromised for TOR phosphorylation (T412A) or deletions compromised for TOR binding ([increment]NH 2-46/[increment]CT104).
Conclusions:
These data together with the ability of the BVr enzyme to resist inactivation by phosphatases indicate that inhibition by rapamycin is not mediated by any phosphorylation event in general and TOR dependent phosphorylation in particular.

Source: http://www.biosignaling.com/content/10/1/4

auto sport medical rehab

No comments:

Post a Comment